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EFFECT OF BOTTOM TOPOGRAPHY, EDDY DIFFUSIVITY, AND WIND

VARIATION ON CIRCULATION IN A TWO-LAYER STRATIFIED LAKE

by Richard T. Gedney, Wilbert Lick,* and Frank B. Molls

Lewis Research Center

SUMMARY

The steady-state, wind-driven circulation is calculated in a stratified lake com-
posed of two layers having uniform but unequal densities and eddy diffusivities. The
position of the thermocline and the three dimensional velocities in both layers are cal-
culated from an asymptotic solution of the shallow lake equations when the Ekman num-
ber in the epilimnion (upper layer) is of order one but the ratio of hypolimnion (lower
layer) to epilimnion eddy diffusivities is much less than one. This analysis differs from
previous ones in that the upper and bottom layers are coupled since no assumption is
made about the hypolimnion velocities being negligible.

The solutions are very dependent on the wind conditions. For a uniform wind stress
of moderate strength, the "zeroth order" horizontal pressure gradients in the hypo-
limnion are zero and the only hypolimnion velocities are in a thin boundary layer adja-
cent to the thermocline. For this case, the bottom topography and value of the hypo-
limnion eddy diffusivity only affect the solution to a small degree. However, for a wind
stress with unit order gradient, small hypolimnion horizontal pressure gradients do
occur producing significant hypolimnion geostrophic (inviscid) velocities. For this case,
the value of the hypolimnion eddy diffusivity has a large effect on the thermocline shape.
In addition, the shape of the lake bottom also becomes important. With unit order wind
stress gradients, large differences in thermocline shape and horizontal velocities occur
between the asymptotic solution which assumes small hypolimnion eddy diffusivity and
previous solutions which uncouple the two layers by assuming the hypolimnion velocities
are zero (hypolimnion eddy diffusivity very large).

* Professor of Geophysics and Engineering, Case Western Reserve University,
Cleveland, Ohio. Professor Lick's work was supported by the National Science Founda-
tion. I



INTRODUCTION

Observations of stratified lakes suggest that during steady wind periods they may be
modeled by considering the lake to be made up of two homogeneous layers each with dif-
ferent densities and eddy diffusivities with the interface between the two layers being
located at the thermocline. This two-layer model is analyzed here. A more complete
discussion of the applicability of the two-layer model is given in reference 1.

Welander (ref. 2) and many others have studied a two-layer model for the oceans
which included the Ekman dynamics assumption that the shear stress at the thermocline
and the ocean bottom are proportional to the geostrophic velocities in either the hypo-
limnion or epilimnion. Others such as Hamblin (ref. 3) have used this approach in the
Great Lakes. In fresh water lakes, the thickness of the friction layer generated by the
wind is of the order of or greater than the average thickness of the epilimnion; and there
is no real geostrophic velocity in the epilimnion to which the shear stress at the thermo-
cline can be made proportional. Therefore, Ekman dynamics cannot be used. In this
analysis, an extension of the shallow lake equations originally derived by Welander
(ref. 4) and shown by Gedney and Lick (ref. 5) to yield good quantitative results for Lake
Erie during uniform temperature conditions is used.

In their two-layer analyses, Welander (ref. 2) and Hamblin (ref. 3) initially un-
coupled the bottom layer from the top layer by assuming that the motion in the bottom
layer can be neglected (quasi-compensation assumption). After finding the position of
the thermocline with this assumption they then allow small motions in the bottom layer.
This small motion is calculated using the thermocline position and shear stress calcu-
lated from the upper layer solution.

As will be shown later in this report, the quasi-compensation assumption does not
appear to be valid for a two-layer lake subjected to a spatially variable wind stress.
We therefore make no assumption pertaining to the hypolimnion velocity magnitude. In
order to solve the governing equations we assume that the ratio of hypolimnion to epi-
limnion eddy diffusivity (vM2/VM1) is small and perform an asymptotic expansion in
that parameter. The solution is valid for any value of the vertical Ekman number (Evl)
in the epilimnion. For the normal case in a large lake, Evl in the epilimnion is of

order 1. For moderate winds, the value of vM2 which makes vM2/vM1 << 1 is only
6 to 12 times that of the molecular kinematic viscosity. According to Hutchinson (ref. 6)
and Sundaran, Esterbrook, Piech, and Rudinger (ref. 7) this is the correct magnitude
for VM2. Larger hypolimnion eddy diffusivities than those considered here have been
investigated numerically by Gedney, Lick, and Molls (ref. 1) and Lee and Liggett

(ref. 8).
In order to determine the error induced by making the quasi-compensation assump-

tion, the results of the shallow lake equations with the quasi-compensation assumption
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included are given and compared with the asymptotic results of the complete two-layer

equations.

SYMBOLS

A1 coefficient in eq.. (7)

A2 coefficient defined by eq. (8)

a2 wac2 (5 + h)

B, C coefficients in equations (32) and (33)

D2 coefficients in eqs. (9) and (10)

D2I aD2 /ag

d1 epilimnion friction depth

d
2

hypolimnion friction depth

Evl epilimnion Ekman number, vMl/fcL2

f arbitrary function

fc Coriolis parameter

fl unit order depth function

f2 unit order wind stress curl function

G coefficient in equations (32) and (33)

g acceleration of gravity

H coefficient in equations (32) and (33)

h nondimensional lake depth

hm ah/am

ht ah/at

K coefficient in eqs. (7) and (8)

L reference length of lake

MT1 Mxl + iMyl, epilimnion volume transport

MT2 Mx2 + iMy2, epilimnion volume transport

m coordinate normal to boundary or curve

3



m, m y x- and y-components of irn

unit normal vector to boundary

_+i a
an ax ay

a a ai--
an* ax ay

p nondimensional pressure

s integer exponent

t coordinate tangential to boundary or curve

Uw wind velocity

u,v,w dimensionless velocity, respectively, in x-, y-, z-directions

x, y, z dimensionless Cartesian coordinates

al 2rtref/d1

a 2 2 rt ref/d2

r l u1 + iv1

r 2 u2 + iv2

6 d2 /(dlPr)

E boundary layer stretching parameter

C nondimensional surface displacement

n (+1

VM1 epilimnion eddy diffusivity of momentum

VM2 hypolimnion eddy diffusivity of momentum

nondimensional thermocline depth

p density of water

Pa density of air

Pr P l/P2

P (P2 -Pl)/Pl

Tw Txw + iyw, dimensionless wind shear stress (Tw/rwef)

W (1 + i)/2
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Subscripts:

b value at lake boundary

c value at lake center

ref dimensional reference quantity

x x-component

y y- component

O value at x = 0, y = O

1 epilimnion

2 hypolimnion

Superscripts:

(i) imaginary part

(r) real part

(0), (1), (2) zeroth, first, second term in asymptotic expansion

dimensional component

unit order function

+ stretched coordinate

BASIC EQUATIONS AND BOUNDARY CONDITIONS

In the present analysis, the lake is considered to be composed of two layers of dif-

ferent density as shown in figure 1. In each layer, the basic approximations are that
the water density is constant, the vertical eddy viscosity is independent of position, the

pressure is hydrostatic, and the lateral friction and nonlinear acceleration terms can

be neglected. Effects due to the Earth's curvature and to the variation in Coriolis force

with position are neglected since the length scales of lakes are much less than the radius

of the Earth. The explanation for the density and eddy diffusivity being considered con-
stant in each layer is given in reference 1. Gedney and Lick (ref. 5) have shown the

other assumptions to be good approximations for the Great Lakes.
The analysis performed here will assume a steady wind. As is well known, the

location of the thermocline in a stratified lake being acted on by a steady wind will

slowly become deeper. The rate of deepening has been measured in Cayuga Lake (see
ref. 7) to be in the neighborhood of 15 to 30 centimeters per day. This rate is of such

magnitude that the time derivative inertia terms in the momentum equations can be
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neglected and the problem is then "quasi-steady. " With the steady wind restriction
plus the other assumptions stated, the nondimensional continuity and momentum equa-
tions applicable to each layer shown in figure 1 are as shown in reference 1:

au 1 av1 aw1
1 + -1 (1)

ax ay az

au2 aV2 aw2++ - + = O (2)
ax ay az

a i r 1 a (3)
a2 az2 2 2 27 an 27 an

1 a r2 i Pr (ata =Pr aP2(4)
1 a _r2 i, r _. + a (4)

12 az2 2 2r an an 2R an
2

The Cartesian coordinate system used (see fig. 1) has x increasing eastward, y north-
ward, and z vertically upwards with the corresponding velocities being uj, vj, and wj
where j = 1 indicates the epilimnion and j = 2 indicates the hypolimnion. In these
equations r 1 = ul + ivl, r 2 = u2 + iv

2
,' is the lake surface, t the thermocline posi-

tion, pj (j = 1, 2) the pressure, a/an = a/ax + i(a/ay), cal = 2rref/dl' a
2

= 2'Tref/d2'
and Pr = P1/P2 where dj and pj (j = 1, 2) are the friction depth and water density in
either the epilimnion or hypolimnion. In forming these nondimensional equations, we
have used the following relations:

L Cref

=L Uref
L Uref

z=Z v=-

tref Uref

t t w= we
5ref Wref
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L'rwe f

Cref - ref
Pldlg

5ref
~ref - pef

w
ITref

Uref - l f
pidif

l 2 v-M1dl- =" 7

fc

PI 2 M2

Ap = -

P1

5ref
Wref Uref

and the overbar indicates the dimensional quantity. Here r ef is the reference wind
stress, g the acceleration due to gravity, fc the Coriolis parameter, vMj (j = 1, 2)
the vertical momentum eddy diffusivity, and L the reference length of the basin.

The system of equations (1) to (4) must be solved subject to the following boundary
conditions:

.w =.w i.y 1 arl'=W +IW=1 r
a+ az

at z = 0

at z = -h(x,y)

rl =r 2

r d2 1 r 2 at z = (x,y)
ar 1 d2 a2
az 2 P azdir

(5)
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w1 =O at z=O

Wl =Ul at_ + vl a )ax y (6)
at z =(x, y)

w2 2 + 2 

where h is the depth of the lake and ·x
T

and ry are, respectively, the x- and y-
components of wind shear stress. The boundary conditions on wI and w

2 at
z = f (x, y) are such that there is no flow normal to the thermocline. For strong enough
winds the thermocline may intersect the surface of the water. This case is not consid-
ered here. The details associated with the derivation of equations (1) to (6) can be found
in Gedney, Lick, and Molls (ref. 1).

We have said nothing about the average thickness of the epilimnion which is deter-
mined by the thermal problem. In this report, the z value of the thermocline will be
specified at one point on the boundary so that the average thickness of the epilimnion is
consistent with observations.

GOVERNING EQUATIONS FOR THE HORIZONTAL VELOCITIES

Equations (3) and (4) subject to the boundary conditions (5) can be solved for the
horizontal velocities in the hypolimnion and epilimnion as functions of the surface dis-
placement C, the thermocline position 5, the lake depth h, and the wind stress TW .

The resulting solutions are

val(-z) cvwl(f+z) w eCsa 1 z i a{ 
r= Ale + Ae + - e- z -< 0 (7)

w 7 an

r2 = ipr ) ew2(h+Z) -Aea2(h+z i -h z g (8)
2= 2- T an e 2 z -() 2 7an

where

A =pw- Ž1 -e 2 a2 -2 a 6i a-+e2a) 7 w ea1 2a2a2Al n + e - / K + ( K + e 
iTK an 7TK an co K
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A2 T e

a
le -a2 ipr 2a1

A 2 o K _K
co K YK

1V1- ea _a e2a + an - i e a2(e2a - l a-I an 7K n

a1 = Wa1l

a 2 = va
2
(h+ t)

1+i
2

6=
dlPr

= an at
an An an

2a 2a -2a 2a
K = 6 +e +e - e2) 

The w1 and w2 velocities can be determined by differentiating equations (7) and (8),

substituting in equations (1) and (2), and then integrating.

ASYMPTOTIC EXPANSION OF TWO-LAYER LAKE EQUATIONS

As explained in the INTRODUCTION we consider here the case when vM2/vM1 << 1

so that 6 = (1/pr) VM2/VM1 << 1 (Pr = P/P2 1. O0). We then perform an asymptotic

expansion which is to be valid as 6 - 0. The asymptotic expansion which we perform is

valid as 6 - 0 provided that two conditions are met. The first condition is that

-a 2 e-22wPr(h+t)/6 dl < 63
e =e

In the limit as 6 - 0 this requires that h + 5 * 0 or that the thermocline does not in-

tersect the lake bottom (note in the analysis h is always positive and t is always neg-

ative). The second condition is that + ) is of order unity (a, = w )

9



which requires that the thermocline be below the surface of the lake by a certain amount
(i. e., T < 0). The bounds on h and T which ensure that these two conditions are met
for the cases to be calculated will be discussed subsequently.

The cases to be calculated will be for -
(1) A moderate wind of 5.2 m/s (vM1 = 16.8 cm 2 /sec)
(2) 1/576 - vM2/VM1 - 1/144 (vM2 is therefore a few times larger than the

molecular diffusivity)
(3) P

2
- Pl = 0. 002203 g/cm3

(4) Lake length of 96 km
(5) Wind shear stress TWef 1 dyne/cm2

For these conditions the values of 6, a 2 , and °1 are

1 < c 1
24 12

84 - a2 - 168

al = 8.4

-a
With this range of 6 and a2 , e < 63 providing the lake depth is approximately
10 percent deeper than the value of I J. The value of Fref is approximately 30 me-

ters. For a1 = 8. 4, the quotient (e1 + )/ i) is of order unity provided the

minimum values of IT are of the order of 3 to 4 meters.
With these restrictions understood we now proceed with the asymptotic expansion.

First,

1 -1 F_ 2a1 +2a+1- I +6 e _+ +6 2e _ + 1 +.

The exp2a L 2aA2 are

The expansions for A1 and A2 are
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weal
Am=- e

1 ( 2al ) 1+ I 26

(e2a1

2 2a 1 2+

- 6 6 1
2a, - \e - /

2a p
+ , 1 + 6e_ __ iPr a i+ +(63)

2a l -12al r an 7 an

a22 = L 2al + 11F 2 l
We r

1
a + i p r a q + 0( 6

5
Aj - ( ) +ia -j-- ++

2 L' 2a 12a 7 an 7r an r an

When the expansion for A2 is substituted into equation (8), some cancellation takes

place to give the more compact form

2Twea l iPr ar + i a_-27 e _ _

w~2al - 7T an 77 an1

G e2al + w e ai2 (z-t) 'iPr an e-w a2(h+z)

L 2aI iT an

+ Pr + 0(62)
7 an

(8a)

When A1 is substituted into equation (7), no such simplification for r 1 results.

The velocity equations (7) and (8a) can be integrated vertically to give the volume

transport equations
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MT1 = MXl + iMy1 = f r 1 dz = -2i W - 1 ac
T an

6 1 ( + (2wpr a7 +2w + a+ WD + 0(63) (9)
2a 1 T an 7T an

MT2 =Mx2 + iMy2 = r 2 dz = iC- 7 (h +) 2 6P a7h Pr iT an W an

+ 6(2 +)1(wD 2 wPr 2 - ) (10)
L \ 2al 7T n an 7a

Integrating equations (1) and (2) in the z-direction and applying equation (6) give

Real a Tl = 0 (11)
k an* /

Real aMT2 = (12)
\an* /

where

a a i
an* ax kay!

and

( I
D

2
()= 4ie

a 1

Terms of order 63 have been neglected in equations (9) and (10). The quantity MTj
(j = 1, 2) is the total volume transport in either the epilimnion or hypolimnion, and
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Mxj and Myj are, respectively, the volume transport components in the x- and y-
directions.

Equations (9) to (12) can be combined to give the governing equations for ~ and 5.
This can be most readily accomplished by forming

Real (aMT1 + aMT 2 = 
a an* /0

which results in

6P V2+ TJ ad aha7a h 2 r(xah 2 ' o(63) (13)
ay ax ax ay ax ay

Combining equations (10) and (12) results in the second governing equation

r V2i - Real _ )( 
\kan\n* an* n*

+6 a i 6 2a 1 2() r an +-2w a = (14)
an* LL Ie2a1 -T D( an Ir anJ

Equations (13) and (14) which neglect terms of order 63 are to be solved for the depend-
ent variables subject to the boundary condition that the volume transport normal to the
boundary is zero. This boundary condition is then

Mxlmx + Mylmy = 0 (15a)

Mx2m x + My2 my = 0 (15b)

where mx and my are the x- and y-components of unit normal m to the boundary.

SOLUTION OF GOVERNING EQUATIONS

The solution of the governing equations (13) to (15) will be performed using an

13



asymptotic expansion procedure. To develop the asymptotic expansion, we substitute

= 7 (O)+ 67(1) + 62(2) + .

t= (0) + 8t (1) + , 2 (2) +. 

= 6(0 () + 62C(2) +

P2 = PlO) + 6pi1 ) + 62 p
(
2 ) + . .

into equations (13) and (14) to give

6PrV2 n(0 ) + 62prV271(1) + Ca1 ( 0 ) ah
ay ax

+ 621(2) ah
\ ay ax

6pr V27(0) + Pr V2n(1I) + 1 (an
®

ah
7T 7T 7T ay ax

a7 (o) axh +
ax ay

a7 (2) ahx a
ax ay/

6 aan(l) ah
l-ay ax

= 2T(xY
ax

an (o ) a+ a16 a(1) ah
ax ay/ r \ ay ax

+ 1 a,(°) a (0)
\ ay ax

-a7(0) at (0) +
ax ay /

_6 ay( 1 ) ax (0)
7T \ ay ax

-a(1) a (0)\
ax ay /

MRea la nn WD2(t (0))
Wan*L 2

2w -a(0)+
Pr n

V an
2w a((°)0

a an 
-62Real-" 2w Pr an7 )

7T an

+ -2.._ a(l + O(62)(terms involving first derivatives)
+ 0(3) = n

+ O(63) = 0

(16)

a ah)
ax ay/

aTw

x + 0(63)
ay

(13a)

l+ a nt~a() at (1)
; \ ay ax

ax(°) ay (1)
ax ay /

14

(14a)

a/(1) ah
ax ay



Similarly, the expansion form of the boundary conditions can be obtained by combining
equations (9), (10), (15), and (16).

Case 1 - Uniform Wind and Constant Depth

Consider the asymptotic solution for a constant depth square basin which is acted
on by a uniform wind over the entire water surface. As determined-from equation (13a),
the zeroth order term (the term which is of order 6) from differential equation (13) is

v2 ( °
) = 0 (17a)

The boundary conditions for 7(0 ) are determined from the zeroth order terms of equa-
tion (15b) and are

1(0) = O at x = 0,1
ay

(17b)

7(°) = o at y = 0,1
ax

and, therefore, 71(0) = constant on the entire boundary.
As is well known, the solution of the boundary value problem represented by equa-

tions (17) is 7(0) = constant. Therefore, to zeroth order, the horizontal pressure gra-
dient (see eq. (4)),

ap(°) (0) a (0) (o)

an an an an

in the hypolimnion is zero. This does not mean the velocities in the entire hypolimnion
are zero. There is a shear stress transfer at the thermocline which imparts motion to
the hypolimnion water in a thin boundary layer adjacent to the thermocline. Below this
boundary layer, the zeroth order velocities in the hypolimnion are zero. This can be
shown from equation (8a) using a typical value for a2 of the order of 168.

It is possible to obtain t 0) along the boundary from the zeroth order component of
the equation (15a) boundary conditions. This results in
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21-W I1 a1 (0) -(o) = 
Y ay

2- haw (0) (0)2TW- a() (o) -= 

X ax

at x = 0,1

at y = 0, 1

where we have used the relations

at (o) = ax (0)
ax ax

and

ay ay2y a

These equations can be directly integrated for the value of k (0) along the boundary to
give

at x = O

at y = O

at x = 1

at y = 1

(18b)

(18a)

(0) =

t (0) = - 47rx
-VO ~ x al + It )I'

k(0) = _ W

0() = -I I +

Tw) 47r

a1

+ JIoO)12

+ (oO)2I '

16
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where t(00
) is the value of t( 0 ) at x = 0 and y = 0.

Since T7(O) is a constant, the zeroth order component of equation (14a) yields nothing.
The second-order terms of equation (14a) give a governing equation for (0) but it in-
volves q7(1). Therefore, to calculate t (0) we must also solve for 7/(1). The governing
equation for 71(1) is obtained from the first-order terms of equation (13a). These 17(1)
and (0) governing equations are

V2r(1) = 0 (19)V 7 1- - (19)

~V2 () + a ('1) at(0 ) n &(1) at(0°) + F7,WD(r)( (O)) at (0) + Di)(0()) at (0]
a ay ax ax ay / ax ay J

+ MT[D( (0)) at(0 ) r)()) ar(g ]jo (20)
ax ay _[J

where D2, = aD2 /20 and the superscripts r and i indicate, respectively, the real
and imaginary parts. In deriving equation (20), we have used the fact that

a(°0) (0) + (° ) = 0
an an an

These coupled equations are solved using the t (0) boundary conditions specified by
equation (18) and the following 77(1) boundary conditions derived from the first-order
terms from equation (15b):

Real[ 2tWD 2((0))]+ Iag(O) a(0)) -1 a( (h+(0)) = at x=0, 1
kr ay ax 7T ay

(21a)

m [TW D2( (0))]_ a(O) + a )+ 7 (h+ t(0))=0 at y=0,1 (21b)
\ ax ay / 7 ax

The solution for t (0) and 71(1) were obtained numerically using finite differences. The
numerical method used was Newton's method with point underrelaxation.
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Case 2 - Uniform Wind With Variable Depth

As has been just discussed for case 1, a uniform wind acting on the water surface
of a constant depth basin produces no zeroth order flow in the hypolimnion except for a
thin boundary layer adjacent to the thermocline. Implicit in the assumptions of this
whole analysis is that this thin hypolimnion boundary layer does not contact the lake bot-
tom. As a result, there are no flow velocities in the region of the lake bottom which
could be affected by variations in depth. Therefore, variations in bottom depth should
not appreciably effect the zeroth order solution for the uniform wind case. This conclu-
sion has been verified by reference 1 where the complete two-layer lake equations have
been solved numerically for a lake whose depth is constant along the shore but is vari-
able in the interior.

In this section the asymptotic solution 7(o) for a variable depth lake will be obtained
to again demonstrate this conclusion. Here we consider a lake whose depth is described
by

h =h
b +16. O(h

c - hb)(x - x2)(y _ y2) 0 x < 1, 0 < y 1 (22)

where hb is the depth at the lake boundary which is taken to be a constant and hc is
the maximum lake depth which is taken to occur at the center of the lake. Note that the
h derivatives tangential to the boundary are directly proportional to the distance from
the boundary. At a small distance A from the boundary, the tangential depth deriva-
tives are of order A.

The zeroth order terms from the governing equation (13a) is

a7 (°) a a h (° O (23a)
ay ax ax ay

where we assume at this point in the analysis that no 7(0) boundary layer exists which
would make the V271(0) term in equation (13a) or order one. The general solution of
equation (23a) is

7 () = f[h(x, y) (23b)

where f is an arbitrary function of the depth h(x, y). The boundary conditions on 7(0)
can be shown from the expansion of equation (15b) to be q1(0) = constant. Since by equa-
tion (22) h is constant on the boundary, equation (23b) satisfies the boundary condition
for 71 ()

In order to determine the form of f we investigate the zeroth order term of equa-
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tion (14a) which is

arq ( ° ) ah a7n (o ) ah+ a (°) at () an(°) a(o)- (2e)____ _ a170) ah~ a77 a - a = 0 (23c)

ay ax ax ay ay ax ax ay

Substituting equation (23b) into this equation results in

ah a 0() ah at ( (23d)
ay ax ax ay

which has the general solution

t(0) f[h(x, y) (23e)

where f is again some arbitrary function. The boundary conditions for t (0) are deter-
mined from the zeroth order term of (15a) and are the same as equation (18b). Since h
is constant on the boundary, no function f will be able to satisfy these boundary condi-
tions.

A possibility exists that there is a t (0) boundary layer so that equation (23d) does
not apply in the boundary region. To determine the boundary layer equations, it is nec-
essary to introduce the stretched coordinates

m+ - x, t+ =y along x = 0,
E(6)

+(~~~ ~(24)

m+ = Y t+ =x along y = 0,
c(6)

in equation (14a). The resulting zeroth order boundary layer equations are then

, a2t (0) af ( z)S+ atg() s at,° 2 (0)5a)- a (Ya -1 h+ (-)S - h =0 (25a)
am+ t+

where this equation applies along x = 0, 1 when S = 1 and along y = 0, 1 when S = 2
and where hm and ht are, respectively, the normal and tangential partial derivatives
of h. All derivative terms except for ht and at (0)/at+ in this equation have been
scaled such that they are of order one. Equation (22) shows that in the boundary layer
region
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ht = ah = Ef1(m+,t+ ) (25b)
at+

where fl is of order one along the entire boundary. In order to estimate the magnitude
of at (°)/at+ in the boundary layer we must consider the boundary conditions (eq. 18(b))
and the interior solution (eq. (23(e)). The boundary conditions show that at (°)/at+ will
be of order one along y = 0, 1 but zero along x = 0, 1. The interior solution (eq. (23(e))
shows that near the edge of the possible boundary layer

ag( =df ah =df f1(m+, t+) (25c)
at+ dh at+ dh

where E is the thickness of the boundary layer. A Taylor series expansion for t (0)
using equations (18b) and (25c) will show that at (°)/at+ in the x = 0, 1 boundary layers
will be of O(E). In the y = 0, 1 boundary layers at (/at+ is of O(1).

When equation (25b) is substituted into equation (25a) and the estimate is used for
at (0 )/at+ , the boundary layer equation along x = 0, 1 becomes

6 a25(0) af_6 a t(0 + a1 af at fl(m+,t+
) + O(E) = 0

E2 am+2 ah am+

When the principle of least degeneracy is used, the proper scale is chosen as E = 61/2
and the final form of the x = 0, 1 boundary layer equation became

a2_ ( 0 ) af a_ ( 0 )

+ 1 ) fl(m+ , t+) +0(61/2) = 
am+2 ah am+

The boundary layer resulting from this equation is an increasing or decreasing exponen-
tial depending on the sign of ah/at+ = Efl(m+ ,t+). Only exponential decreasing functions
can be allowed. Because ah/at+ = Ef1 changes sign about y = 0. 5, it will only be pos-
sible to have a boundary layer along one-half of the x = 0, 1 boundaries. With equa-
tions (22) and (23e), the values of t (0) outside the boundary layer will be symmetric

(0)about y = 0.5. But this means that a t boundary layer will be needed along the en-
tire x boundary. We conclude from this that no ~ (0) boundary layer is possible along
the x = 0, 1 boundaries which will permit the 5 (0) boundary conditions to be satisfied.
As a result, no t (0) solution exists when we assume a nonconstant 7(0) form for equa-
tion (23b). The only other possibility is that q(0) is a constant.
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Before finally concluding that 77( 0) is constant for this variable depth basin case,
we must admit the possibility of an 7 (0) boundary layer that would make the V27 (0)
term in equation (13a) of order one. If this is done, the same arguments just used to
show that no t (0) boundary layer existed will show that no 77(0 ) boundary layer can
exist. Therefore, we conclude that q ( 0 ) is a constant and that the zeroth order horizon-
tal pressure gradient in the hypolimnion (apO)/an = q7(°o)/an) is zero whether or not the
lake depth is variable.

Case 3 - Wind Stress Gradients of Order 6 With Constant Depth

The zeroth order terms from the governing equation (13a) when the lake depth is
constant but the wind shear stress curl (aTW/ax - aTxW/y) is of order 6 is

axw aw
v2r1(0) =-2 f2 ( -y (26)

Pr f ax ay

where

f2 /a'-W =T; 1oaW_ a(X-

\ ax ay 6 ax ay

is of order one. The boundary conditions for 77(0) can be derived from equation (15b)
and again 7(0) is a constant on the boundary. This boundary value problem for 71(o)
has a nonconstant solution which will result in hypolimnion pressure gradients
(apO)/an = aJ(0)/an).

The governing differential equation for 5 (0) is obtained from the zeroth order com-
ponent of equation (14a). This equation for ~ (0) is singular and on the interior region of
the basin is

a1(
0

) at ( 0 ) _ a ( 0 ) ag (0) = (27a)_____ -5 al ag -o 0 (27a)
ay ax ax ay

In order to satisfy the boundary conditions, a "boundary layer" must exist along por-
tions of the boundaries. To determine the boundary layer equations, it is necessary as
in the previous case to introduce stretched coordinates given by equations (24). The
resulting zeroth order boundary layer equations are then
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6 a2 ( 0 + a ( 1 )S+lr (0m) at + ()S 1 (0) a) = 

Ea +2 L at+ E am+J

where this equation applies along y = 0, 1 when s = 1 and along x = 0, 1 when s = 2
and where 70)and 1t are, respectively, the normal and tangential partial derivatives
of 77(0 ) given by the solution of equation (26). Because of the boundary condition on 7(0)
(i. e., 7(0) = constant on the boundary), q/0) within a possible boundary layer thickness

e can be shown by a Taylor series expansion to be O(E). We denote here 7
0

) (0) ct

where (7?) is of order one. Using the principle of least degeneracy the proper value of
E is then e = 61/2 and the boundary layer equation becomes

a2 (0)~(0)s(0)1
-a t- + a )s+1 7 (0) at1 ) + (- So)( (= 0 (27b)
am+ 2 Lat + am+ ]

Instead of obtaining the interior and boundary layer solutions separately, we obtain the
complete 71(0) solution from the combined equation

v2 (0(0) + (a7 (0( ) at (0) 

ay ax ax ay

The boundary conditions for t (0) are the same as equation (18). The solution of equa-
tion (28) is easily obtained numerically using successive overrelaxation.

Case 4 - Wind Stress Gradients With Variable Lake Depth

The results to be given subsequently for case 3 where the basin depth is constant
and the wind stress curl is of order 6 show that significant geostrophic velocities occur
in the hypolimnion due to the finite values of ap?)/an = a/(O0)/an. With significant hypo-
limnion velocities, variations in lake depth should be very important. Consider again a
square lake whose depth is described by equation (22) which is acted on by a wind with a
stress curl (aTW/ay - aTyW/ax) of order 6 (case 4a) and order 1 (case 4b). At the lake
boundary, normal derivatives of the wind stress are nonzero but tangential derivatives
are assumed zero.

Case 4a - wind stress curl of order 6. - The zeroth order governing equation for

7(0) and t (0) for this case are the same as case 2. The solution is therefore ~7(0) =
constant. The variation in lake depth is then enough to eliminate the hypolimnetic
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horizontal pressure gradient (a71(°)/an) which was created by the 6 wind stress curl
when the depth was constant. The effect of variation of lake depth is therefore very
strong.

Case 4b - wind stress curl of order one. - For this case the zeroth order term of
the governing equation (13a) is

aT(o) ah a7( 0
°) ah 27 Y X (29)

ay ax ax ay a, ax ay

The boundary condition on 7/(0) from equation (15a) is 71(0) = constant. At the bounda-
ries, equation (22) shows that the tangential depth derivative h

t
is zero and the normal

depth derivative hm is finite. Using this fact in the nonhomogeneous equation (29)
shows that the tangential 71(0) derivative at the lake boundary is nonzero. As a result,
equation (29) can not satisfy the 7-() = constant boundary conditions. We must there-
fore consider an 7 (0) boundary layer which will be compatible with a solution of equa-
tion (29) in the interior of the lake.

To determine the boundary layer we introduce stretched coordinates given by equa-
tion (24) into equation (13a) which gives

a2 (0) r- )s+l aq
(
0) _7

( 0 )
ax

6 Pa + h + (- 1 lqh-=27T - xW

E2 am+2 L am ht + (-1)at x ay

where this equation applies along y = 0, 1 when s = 1 and along x = 0, 1 when s = 2

and where ht and hm are, respectively, the normal and tangential partial derivatives
of h with respect to the boundary. Now equation (22) shows that

ht = Efl(m,t+ )

where fl is of order one. Again using the principle of least degeneracy gives the prop-
er scaling as E = 61. The boundary layer equation is then

Pr am+2(0) + al1)+l (v0 f(m+,t+) + (-1)S a hm(m+,t+ = 2 'Y - ) x
am 2 am+ at ay

Instead of obtaining the interior and boundary layer solutions separately, we choose to
solve the combined equation
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6prV1(0) + i1 ( a _ ()a(0 ) 2n7r ( a3 - (30)
ay ax ax a ax ay

over the entire region. The boundary conditions on 77(0 ) are shown from the expansion

of equation (15b) to be 77(0) = constant.
The solution of equation (29a) will result in 71( ) = -- (0)(x, y) with a boundary layer of

order 61/2. The governing equation for (0) is obtained from equation (14a), and the

boundary value problem is easily seen to be singular. In the interior region,

~( ) ( a h- a )
ay ax ax a \ ay ax ax ay /

The equation valid in the boundary layer can also be readily derived. Introducing the
equation (24) stretched coordinates into equation (14a)- results in

(2p 1) 4(m + a,[E(-l)S+ O)f (m+1 t+) + (21)S70)hm1

+ e(l 1 )S+1 a (0) + (-1 )S (0) a _(0) + 6 a2 00)0
at+ E m+ 2 am+ 2

where 7(0) is the second partial derivative of 7(0) with espect o m and is of order
one or less. From the (0 solution determined from equation (29a), 7) (within a

distance 61/2 from the boundary) was found to be -61/2?t°O) where J7) is of order

one (this same behavior could also have been found by expanding 1 (0) in a Taylor series
about the boundary). Two possible t (0) boundary layers can exist depending on the
magnitude of (m(0) in the boundary region. In some boundary regions an 17( ) boundary

layers exists so that 7m) = m)/1/2; in other boundary regions 7m
O ) = 7(m

O ) (~7mO
) is of

order 1). Where an 7(0) boundary layer exists, the t (0) boundary layer is of order
63/4 (E = 53/4) and the appropriate boundary layer equation is

1
+ ' 1 (- 1) s+m7 a = 

am+ 2 at+

In regions where no 71(0 ) boundary layer exists, the t(0) boundary layer is of order
61/2 (E = 61/2) and the appropriate boundary layer equation is
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am+ 2 mm m atm (
1

m+O

However, as with the solution for 77(0 ) , we do not choose to obtain the interior solution
and boundary layer solution separately but to solve the combined equation

6V2 (°) 6(2 1 (0) + a ah _ an () (0) (0) (0)\+ -
r ay ax ax a ay ax ax ayy/

(31)

Again the boundary conditions on 4 (0) are the same as for equation (18).

SOLUTION WITH ZERO VELOCITY IN THE HYPOLIMNION

As discussed in the INTRODUCTION, the "quasi-compensation" assumption is com-
monly made in two-layer lake analyses to find the thermocline position. The quasi-
compensation assumption is that the horizontal pressure gradient and the velocity to be
zero in the hypolimnion. Taking the hypolimnion velocity equal to zero is equivalent to
taking the hypolimnion eddy diffusivity (vM2) to be infinite. The zero hypolimnion veloc-
ity case is considered here so as to be able to contrast its results with the results for
the more reasonable case where the hypolimnion eddy diffusivity is small.

The advantage of using the zero hypolimnion velocity assumption is that it results in
a single governing equation for the thermocline position t. If the boundary condition
Wl = r 1 = 0 at z = 4 is used at the thermocline, the following governing equation and
boundary conditions for 4 can readily be derived using equations (1), (3), (11), and
(15a):

Gv2 + aG + = +27TaB (_ W+ >w+ C a 7 w _
-a ax a L ax ay ax ay

(aB at + acat)Tw + (ac a aB a.w (32) -

ax ay Tx 

ka4 ax a4 ay/ \a ax at ayYJ

G a2g H2a. =-21(BTg- CTYW) at x= }0,

(33)
H at + G at = -27 W + BT at y = 0,

ax ay (C ~x lB y a =0
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where G, H, B, and C are given by

sin (ald) - sinh (a~ 1 )

cos (a1l) + cosh (adl)

sin (a1d) + sinh (a1d)
H =-+ ~15

cos (al1) + cosh (a14)

2 sin ( a1 /2) sinh ((a1 k/2)
B=

cos (a 1l) + cosh (ao 1 t)

2 cos (aY1/2) cosh (ael/2)
C= - 1

cos (o1,) + cosh (a(10)

The derivation of these equations may also be obtained directly from the results given by
Welander (ref. 4) for a shallow homogeneous lake. When h is replaced by -T and
a8/8a by -a8/ax, etc, Welander's equations (11) and (13) lead to equations (32) and (33)
after they are nondimensionalized in the manner given herein. It should be noted that
equations (32) and (33) are not part of an asymptotic expansion but include terms of all
order. Equations (32) and (33) can be solved numerically using successive underrelaxa-
tion with Newton's method incorporated. At each iteration the equations are linearized
about the t values determined at the previous iteration.

RESULTS

The governing equations derived in the previous sections were solved for the posi-
tion of the thermocline t, the position of the lake surface C, and the hypolimnion and
epilimnion horizontal velocities u and v. All results are presented for a square basin
with the following parameter values:
Basin length, L, km . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96.6
Epilimnion temperature, C . . . . . . . . . . . . . . . . . . ...... 22
Hypolimnion temperature, C . . . . . . . . . . . . . . . . . . . . . . 4
Density difference, Ap ........................ . 0.002203
Density ratio, pr ........................... 0.9977969
Epilimnion eddy viscosity, vM1, cm 2 /sec . . . . . . . . . . . . . . . . . . 16.8
Nominal wind velocity, Uw, m/sec . . . . . . . . . . . . . . . . . .. . . . 5.2
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The vMl value corresponds to that generated by a wind velocity of 5.2 meters per
second. Small variations in wind velocity about the nominal value will be allowed. The
wind shear stress will be determined by

x =-(0. 00273)(pa)(Uw )

TW = o
yO

where Pa is the density of the air and the 0. 00273 wind drag coefficient is that proposed
by Wilson (ref. 9).

The wind drag coefficient and vM1 values used here are the same as the ones used
by Gedney and Lick (ref. 5) for current calculations in Lake Erie during the uniform
water temperature period (winter period). With these values agreement between the
Lake Erie calculations and measurements were very satisfactory. The epilimnion in
our two-layer model is considered to be of uniform temperature and for the cases cal-
culated here will have an average thickness of approximately 20 meters. Since 20 me-
ters is also near the average depth of Lake Erie, the vMl value should be very similar
to that used in the Lake Erie calculations.

In obtaining all the thermocline solution the boundary conditions (18b) were adjusted
to give the desired mean thermocline depth.

Case 1 - 5. 2 Meter per Second Uniform Wind and Constant Depth

Zeroth order asymptotic solution. - The zeroth order solution is governed by equa-
tions (17) to (21) and gives the pressure gradient in the hypolimnion as zero; that is,

ap( () (°) o ()

an an an

Therefore, there is no zeroth order geostrophic inviscid current in the hypolimnion.
There are, however, hypolimnion velocities created by the shear stress at the thermo-
cline. The zeroth order thermocline (T(O)) contours are shown in figure 2(a). The
thermocline is at a shallow depth (4.6 m) at the upwind end of the lake and a large depth
(_30 m) at the downwind end. There is very little tilting of the thermocline in the cross
wind direction and, as determined by the equation (18b), there is no tilting at the upwind
and downwind boundaries of the lake. The dimensional form of equation (18b) for the

27



thermocline boundary values is

+ I(0
)

at 0,1

(0) = -__o_ a at x = 0

2TxL ( ) /2
_59P (0)- PI + I at x = 1(

where the overbar indicates dimensional quantities. It is important to note that the
boundary values of the zeroth order solution for the thermocline do not depend on (1) the
eddy diffusivity values of (2) the depth of the lake. Furthermore, the length to width
ratio of the lake has no influence on the t (0) boundary values. This zeroth order solu-

tion, of course, is only valid as long as d2 /dl = vUM2/vM1 << 1 and the lake is deep-
er than the thermocline by the amount d2 , which is the friction depth in the hypolimnion.

In figures 2, the horizontal velocities are given at the lake surface and at depths of
6. 7, 15, and 20 meters. These velocity results have been determined from equations (7)
and (8) assuming d2 = 1. 5 meters. The dashed line included on some of the velocity
plots is the intersection of the thermocline with the horizontal plane at the particular
depth. The velocity patterns down to 10 meters are similar to those which occur in a
homogeneous lake. The Coriolis force causes the deflection of the surface velocities to
the right of the wind and a clockwise rotation of the current vector with depth. The ef-
fect of the epilimnion thickness being smaller at the upwind end of the lake is easily
discerned from the figures. At depths closer to the thermocline, the epilimnion veloc-
ities rotate even more clockwise until they are in a southerly cross wind direction. As
we go deeper to a region below the thermocline the velocities become very small in mag-
nitude. At a distance approximately equal to d2 below the thermocline the velocities
are essentially zero.

Effect of increasing the hypolimnion eddy diffusivity. - The effect of increasing the
eddy diffusivity on the thermocline position is shown by considering solutions for values

of 6(= 1/Pr (vM2/vMl)) of 0 0. 5 and oo for the uniform wind and constant depth
condition. The 6 = 0 case is obtained from the zeroth order solution governed by equa-
tions (19) and (21). The results for the 6 = 0. 5 case are obtained from the numerical
solution of the complete two-layer lake equations by Gedney, Lick, and Molls (ref. 1).
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The results for the 6 = - case are obtained from equations (32) and (33) which assume
zero hypolimnion velocity. As previously discussed in the INTRODUCTION, the zero
hypolimnion velocity assumption has been used by others (refs. 2 and 3) to solve for the
position of the thermocline since it uncouples the lower layer from the top layer.

The thermocline positions for 6 = 0, 0.5, and o are shown in figure 3. In each
case the minimum depth of the thermocline is approximately 8. 4 meters and occurs
along the right boundary. As 6 is increased (vM2 increased) the thermocline tilt in-
creases though not dramatically. For uniform wind conditions, the 6 = m case, which
assumes zero hypolimnion velocities, does not differ greatly from the more realistic
6 < 1 case.

Case 2 - Uniform Wind With Variable Depth

As has been shown by the case 1 asymptotic results with 6 << 1, a uniform wind
acting on the water surface of a constant depth basin produces no zeroth order flow in
the hypolimnion except for a thin boundary layer adjacent to the thermocline. The
zeroth order horizontal pressure gradient for case 1 is zero. From these results we
expect that a variation in lake depth should produce no or a negligible effect when the
winds are uniform. This was shown in the analysis section to be true. The zeroth
order horizontal pressure gradient in the hypolimnion is zero for a uniform wind with
variable depth.

Case 3 - Wind Stress Gradients of Order 6

In this section we examine the effect of a variable wind stress of the form

W = 0.0

acting on the surface of a constant depth basin. This Tw has the largest wind stress at

the center of the lake which often occurs in actual lakes. (Note that x = 1, y = 1 corre-
sponds to x = 96.6 km, y = 96. 6 km. ) This wind stress also creates a maximum wind

stress curl 3aT/ayl of 26 at x = 0. 5 and y = 0.0 and 1. 0. The governing equations
for this case are equations (26) and (28).

The thermocline depth contours are shown in figure 4(a) for 6 = 1/24. These re-
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suits show that the thermocline shape is very sensitive to spacial variations in the wind
stress. Whereas the thermocline generally has very little variation in the cross wind
direction when the wind stress is constant, a wind stress curl of order 6 creates a
large variation.

The T(0) boundary layer of width 61/2L predicted by equation (27) occurs along
several portions of the boundary as shown in figure 4(a). The "outer" solution governed
by equation (27a) extends throughout the rest of the lake other than these boundary layer
regions.

Shown in figure 4(b) are significant horizontal velocities below the thermocline at a
depth of 32 meters. These velocities occur below the viscous boundary layer adjacent
to the thermocline and therefore are geostrophic (inviscid) velocities created by the
nonzero horizontal pressure gradient in the hypolimnion. The governing equation for
the geostrophic velocity can be obtained from equation (4) by dropping the viscous terms
and is

() e(0) a (°) a(0) = -i [U(0) + iv(0)]

an an an an Pr

The geostrophic velocity occurs at a right angle to the direction of the horizontal pres-
sure gradient Vp20) = V7 (0). As a result, the geostrophic velocities are tangent to the
71(0) contours shown in figure 4(c). The geostrophic flow in the region of the lake bottom
is, of course, brought to rest in a velocity boundary layer at the lake bottom.

With significant geostrophic flow in the hypolimnion, we expect a depth variation to
be very important. As shown in the analysis section, the inclusion of a variable depth
with an order 6 wind stress curl eliminates the hypolimnion horizontal pressure gra-
dient (i. e., 7 (0) is constant) and therefore the hypolimnion geostrophic velocity.

The influence of bottom topography is therefore very strong. We next consider the
important case where the wind stress gradients are of order one over a basin of variable
depth.

Case 4 - Wind Stress Gradients of Order One

In this section we consider the two-layer solution for a variable wind stress of the
form

TX =-O. 914 - 2. O(x - x2 )(y y2 Ox 1
(35)

30 ~w0
Ty = 
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acting on the surface of a variable depth basin of the form

ah = 2. 0(1 - 2x)(y - y2)
ax

0I x_ 1

ah = 2. 0(1- 2y)(x- x2 ) 0<y 1
ay

(Note that x = 1, y = 1 corresponds to xR = 96.6, y = 96.6 km. ) The wind stress creates

a maximum wind stress curl (aTxw/ay) of -0. 5 at x = 0. 5 and y = 0. 0 and 1. 0. The
asymptotic expansion solution to this case is governed by equations (30) and (31).

The thermocline depth contours are shown in figure 5(a) for a 6 = 1/24. The (0)
solution contains boundary layers along y = 0, y = 96. 6, and i = 0 boundaries. These
boundary layer regions are more clearly shown in figure 5(b) which is a plot of the ther-
mocline depth along the x = 48.3 km (x = 0. 5) station. Figure 5(b) shows the thermo-
cline to have a large shape variation in the cross wind direction.

The horizontal velocities at the surface and at 6.7, 20. 0, and 35. 0 meters are
shown in figures 5(c) to (f). The figures show the effect of the shape of the thermocline
on the velocities. The thermocline shape produces the clockwise gyre shown in fig-
ure 5(e). Below the thermocline at a depth of 35. 0 meters geostrophic velocities of
order 1. 0 to 5. 0 centimeters per second occur. As explained in the previous section
(case 3), these geostrophic (inviscid) velocities are created by and are perpendicular to
the horizontal pressure gradient Vp20) = V (

0
) . The geostrophic velocities are there-

fore tangent to the 71(0) contours shown in figure 5(g). The high geostrophic velocities
near the boundaries are created by the 7(0) boundary layers shown in figure 5(g).

In contrast to the uniform wind stress solution, the unit order wind stress gradient
solution is very dependent on the value of the hypolimnion eddy diffusivity. Figure 5(b)
shows the shape of the thermocline at x = 48.3 kilometers (x = 0. 5) for the same applied
wind stress for the cases where 6 = 1/24, 1/12, and o. The 6 = oo case corresponds

to the solution governed by equations (32) and (33) where the velocities on the entire
hypolimnion are assumed zero. The thermocline contour plots for the 6 = 1/12 and
6 = - cases are shown, respectively, in figures 5(h) and (i). In all three cases the
minimum thermocline depth of 6.9 meters occurs along the right boundary. As the
hypolimnion eddy diffusivity (vM2) increases (6 increases), the cross wind variation in
the thermocline depth can be seen to become much less.

CONCLUDING REMARKS

The steady-state, wind-driven circulation has been calculated in a stratified lake
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composed of two layers having uniform but unequal densities and eddy diffusivities. The

solution is obtained from the governing equations assuming the ratio of hypolimnion

(lower layer) to epilimnion (upper layer) eddy diffusivities (vM2/vM1) is much less than
one. A value of this ratio much less than one is generally recognized as being true for

lakes during the late summer stratification period.
The results indicate that the thermocline shape is strongly dependent on (1) spatial

variation of the wind (on the order of 1 m/sec) over the lake, (2) the variation in lake
depth, and (3) the magnitude of the hypolimnion eddy diffusivity.

When the wind magnitude varies spatially over a lake, significant velocities occur
in the entire hypolimnion. Previous two-layer lake models have calculated the thermo-

cline position by making an interim assumption that the velocity in the entire hypolim-
nion is zero (this is equivalent to assuming the hypolimnion eddy diffusivity is infinite).

The thermocline shape calculated in this manner is found to differ by a large amount
from the asymptotic solution which assumes a small hypolimnion eddy diffusivity.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, January 24, 1973,
160-75.
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I lake

y,v

i gure 1. -Cartesian co tor stratified lake.

figure I. Carteslan coordinates for

0 7.5 15 miles

Distance 10 20 km
0 10 20 M

Uniform wind -to)

(a) thermocline depth contours, wd) (m).

Figure 2. - Zeroth order two-layer lake solution with uniform wind and

constant depth (b = 1/24).
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0 7.5 15 miles
Distance I , ',,', 

0 10 20 km
Current 0 1 ft/sec
magnitude 0 20 cm/sec

-Uniform wind

(b) Surface velocities.

0 7.5 15 miles
Distance I , 

0 10 2 0 km

Current 0 1 ft/sec
magnitude 0 20 cm/sec20 cm/sec

(c) Horizontal velocities at 6.7 meters.

Figure 2. - Continued.
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0 7.5 15 miles
Distance I- ' ' , ' 

o 10 20 km
Current 0 1 ft/sec
magnitude 0 20 cm/sec

(d) Horizontal velocities at 15 meters.

0 7.5 15 miles
Distance r, ',,

0 10 2 0 km
Current 0 1 ft sec
magnitude 0 I I ' cm 

0 20 cm sec

(e) Horizontal velocities at 20 meters.

Figure 2. - Concluded.
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0 7.5 15 miles
Distance t , , ,, '

0 10 20 km -Uniform wind
e(o)

\ -9-u\ 11,
9-o

T, 11't.

(a) Thermocline depth contours, f(O) (m); predicted by asymptotic two-layer
equations (20) and (21) (6 = 0).

0 7.5 15 miles
Distance ,10 ' 20 km

0 10 2 0 km
Uniform wind

JI

(b) Thermocline depth contours, [ (m); predicted by complete
two-layer equations (6 = 0.5; ref. 1).

Figure 3. - Comparison of two-layer lake solutions for 6 = 0.0, 0.5, and A.
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O 75 15 miles
Distance I, , , i , 1

o 10 20 km
Uniform wind

(c) Thermocline depth contours E (m) when hypolimnion velocities are zero
(6 -m).

Figure 3. - Concluded.

0 7.5 15 miles
Distance 6I, ', , i ', '

O 10 20 km

y
-25.0

-27.0
I

-23.0
C -

-21.0
I i

4 Wind.

C .
(a) Thermocline depth contours, I(o) (m).

Figure 4. - Constant depth two-layer lake solution with wind stress gradients of order
6(6 = 1/24). See equation (34) for form of wind stress.
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(a) Concluded.

Figure 4. - Continued.

0 7.5 15 miles
Distance I, ', , km

0 10 2 0 km
Current 0 1 ft/sec

magnitude 0 20 cm/sec

(b) Horizontal velocities at 32-meter depth.

Figure 4. - Continued.
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0 7.5 15 miles
Distance F, I, , ', 

0 10 20 km

(c) 71(o) Contours. Difference between each 71(0) contour is T10-2;
77(°) increases from point A to point B (6 = 1/24).

Figure 4. - Concluded.

0 7.5 15 miles
Distance 10 , i m

0 10 20 km
Wind

y -27.0 -23.0 -19.0 -15.0 .
-31.0 25.0 , -21. -11.0I-29.0 25.0 I-21.0 'I-17.0 \ -13.0 \ -9.0

. ' I,-1\ I \.0 

-

(a) Thermocline depth contours, '(o) (m); 6 = 1/24 (from eqs. (30) and (31)).

Figure 5. - Variable depth two-layer lake solution with wind stress curl of order
one. See equation (35) for form of wind stress.
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= 1/24

Wind

\\r 1/12

0 20 40 60 80
Distance, km

(b) Thermocline profile at x = 48. 3 kilometers.

0 .7.5 15 miles
Distance , ', ', ,' 

0 10 20 km
Current 0 1 ft/sec
magnitude 0 20 cm/sec

(c) Horizontal surface velocity (6 = 1/24).

Figure 5. - Continued.
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0 7.5 15 miles
Distance I, 'L ,', ,, km

Current 0 1 ft/sec
magnitude 20 cm/seco 20 cm/sec

(d) Horizontal velocity at 6. 7-meter depth (6 = V24).

0 7.5 15 miles
Distance I , ', , 

0 10 20 km
Current 0 1 ft/sec
magnitude OL O cm/sec

(e) Horizontal velocities at 20-meter depth (6 = 1/24).

Figure 5. - Continued.
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C

0 7.5 15 miles
Distance , ,

o 1o 20 km
:urrent 0

magnitude
1 ft/sec

o0' 20 cm/sec

(f) Horizontal velocities at 35. O-meter depth 6- 1/24).

0 7.5 15 miles
Distance 1, , , ' , ', "

0 10 20 km

(g) 77(o) Contours. Difference between each r/(o) contour is 2xT10-3

771() increases from point A to point B (b - 1/24).

Figure 5. - Continued.
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, Wind

0 7.5 15 miles
Distance I, .' , w in d

0 10 20 km

-19. 0 -17 -15;0 -13.0-29.0 -27.0 -25.0 -23.0 -21.0 / /-I,.0 -21.0 / /

(i) Thermocline depth contours, ~ (m); 8 = O (from eqs. (32) and (33)).

Figure 5. - Concluded.
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